Skip to content Skip to sidebar Skip to footer

STORM (Spatiotemporal TOken Reduction for Multimodal LLMs): A Novel AI Architecture Incorporating a Dedicated Temporal Encoder between the Image Encoder and the LLM

Understanding videos with AI requires handling sequences of images efficiently. A major challenge in current video-based AI models is their inability to process videos as a continuous flow, missing important motion details and disrupting continuity. This lack of temporal modeling prevents tracing changes; therefore, events and interactions are partially unknown. Long videos also make the…

Read More

Salesforce AI Proposes ViUniT (Visual Unit Testing): An AI Framework to Improve the Reliability of Visual Programs by Automatically Generating Unit Tests by Leveraging LLMs and Diffusion Models

Visual programming has emerged strongly in computer vision and AI, especially regarding image reasoning. Visual programming enables computers to create executable code that interacts with visual content to offer correct responses. These systems form the backbone of object detection, image captioning, and VQA applications. Its effectiveness stems from the ability to modularize multiple reasoning tasks,…

Read More

This AI Paper Introduces UniTok: A Unified Visual Tokenizer for Enhancing Multimodal Generation and Understanding

With researchers aiming to unify visual generation and understanding into a single framework, multimodal artificial intelligence is evolving rapidly. Traditionally, these two domains have been treated separately due to their distinct requirements. Generative models focus on producing fine-grained image details while understanding models prioritize high-level semantics. The challenge lies in integrating both capabilities effectively without…

Read More

Optimizing Imitation Learning: How X‑IL is Shaping the Future of Robotics

Designing imitation learning (IL) policies involves many choices, such as selecting features, architecture, and policy representation. The field is advancing quickly, introducing many new techniques and increasing complexity, making it difficult to explore all possible designs and understand their impact. IL enables agents to learn through demonstrations rather than reward-based approaches. The increasing number of…

Read More

Vision Transformers (ViT) Explained: Are They Better Than CNNs?

1. Introduction Ever since the introduction of the self-attention mechanism, Transformers have been the top choice when it comes to Natural Language Processing (NLP) tasks. Self-attention-based models are highly parallelizable and require substantially fewer parameters, making them much more computationally efficient, less prone to overfitting, and easier to fine-tune for domain-specific tasks [1]. Furthermore, the…

Read More